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A review is given of recent developments involving the dynamics of random 
interfaces formed in the evolution of metastable and unstable systems. Topics 
which are discussed include interface growth and nonequilibrium dynamical 
scaling. The possibility of there being dynamical universality classes in first- 
order phase transitions is also discussed. There are a large number of systems of 
experimental interest which include binary alloys, binary fluids, and polymer 
mixtures. Other systems studied by computer simulation include the kinetic 
Ising, Potts, and ZN models. 
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1. I N T R O D U C T I O N  

There are many fields in science in which the dynamics of interfaces 
separating different phases of matter plays an important role. (1'2) An 
important class of these problems involves the kinetics of first-order phase 
transitions. (3) In a typical experiment a system is rapidly quenched from a 
high-temperature, disordered equilibrium state to a nonequilibrium state 
below a phase transition point. The quenched system will eventually evolve 
to its new equilibrium state, which will be a coexistence of, for example, 
two ordered phases in the case of  a binary fluid or binary alloy (Fig. 1). In 
this process of equilibration, local regions (domains) of these ordered 
phases will form, which will be separated by interfaces. As the system 
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Fig. 1. The solid line denotes the coexistence curve for a binary fluid or binary alloy, where 
T denotes the temperature and c the concentration. A quench to an unstable state inside the 
classical spinodal curve (dashed line) is shown. The lined region around this curve indicates 
schematically the region of expected gradual transition between a metastable and unstable 
state. (A more accurate, detailed description of this transition region is given in Ref. 6.) 

evolves towards equilibrium, various domains will grow and others will 
shrink, which means that the local interfaces will evolve in time. One 
problem of experimental and theoretical interest is to predict the growth 
law for the average domain size in different systems. As we will discuss 
later, this is not in general an easy problem due to the variety of different 
(competing) mechanisms for growth which exist in such systems. One 
particular theoretical approaeh to this domain growth problem involves 
formulating equations of motion for the moving interface, as we will discuss 
later. 

In the kinetics of first-order phase transitions one usually distinguishes 
between metastable and unstable nonequilibrium states. In mean field 
theories, with a van der Waals loop in the nonequilibrium region, it is 
possible to make a sharp distinction between such states. Metastable states 
are those for which the order parameter inverse susceptibility is positive 
(the outer portions of the van der Waals loop), while unstable states are 
those for which the inverse susceptibility is negative (the inner portion of 
the van der Waals loop). For a fixed temperature T below the critical 
temperature T~ (Fig. 1) there will be two "spinodal" points at which the 
inverse susceptibility vanishes. The locus of these pairs of points as a 
function of temperature is known as the spinodal curve. Although this is a 
useful (but loose) way in which to distinguish between metastable and 
unstable states, there does not seem to be any sharp dynamical distinction 
between a metastable and unstable state for systems with short-range 
forces, at such a spinodal point. (3-6~ 
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It is important to recognize that there are two rather different stages in 
the evolution of a nonequilibrium state. In the "early time" stage the 
system is in the process of forming interfaces via various fluctuations. For 
example, a system quenched to a metastable state close to the coexistence 
curve in Fig. 1 will form localized droplets of the minority B-rich phase in 
the background of the A-rich phase. These droplets will, of course, be 
separated from the background phase by interfaces. The rate of birth of 
these droplets is the subject of homogeneous nucleation theory, which we 
will not discuss here. (3'7) Once droplets larger than a critical size of radius 
R C are formed, the metastable state will begin to decay: droplets larger than 
Rc will grow while droplets smaller than R~ will shrink. This "later time" 
growth of droplets is the second stage of evolution. It can proceed via 
several mechanisms, such as Lifshitz-Slyozov (8) evaporation-condensation, 
droplet coalescence, etc. Similar remarks apply to unstable states (such as a 
quench at the critical concentration in Fig. 1). Initially the System develops 
long-wavelength fluctuations of the order parameter throughout the entire 
sample. At the very early stages when these fluctuations are small, there are 
no sharp interfaces separating different phases. However, as this pattern 
subsequently "coarsens" with time, well-defined interfaces will form. Subse- 
quent to this "early time" stage, the pattern will continue to coarsen and in 
the "later time" the growth of the (interconnected) domains proceeds, as in 
the metastable case. The point to note here is that it might be convenient 
theoretically to study equations of motion for these interfaces in the later 
stages. The nonlinear Langevin equations (Section 2) are more appropriate 
for discussing the early stages of nucleation or spinodal decomposition. 

We also note in this regard that as one changes the quench concentra- 
tion from a metastable value close to the coexistence curve to one closer to 
the classical spinodal curve, say, the critical droplet becomes more diffuse. 
The distinction between droplet and long-wavelength instabilities becomes 
less sharp near the classical spinodal curve. Thus one would expect a 
gradual transition between the metastable and unstable states, as has been 
pointed out most clearly by Binder. (6) (This gradual transition has been 
seen in experimental, Monte Carlo, and theoretical studies of the scattering 
intensity.(3) ) 

It is worth noting the wide variety of systems in which phenomena 
analogous to those described above occur. These include (3) binary and 
ternary alloys, simple and binary fluids, polymer-polymer blends, glasses, 
coherent metal-hydrogen systems, physisorption and chemisorption, gels, 
geological systems, intercalation compounds, superftuids, and chemical 
reactions. It is obviously well beyond the scope of this article to discuss all 
of these systems, so we will content ourselves with discussing some results 
for "simple" systems. These will include binary alloys, kinetic Ising ferro- 
and antiferromagnets and the Ports and vector Potts (also called the clock 
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or Z N model) models. We will primarily focus on relatively recent develop- 
ments which include the observation of dynamical scaling for the scattering 
intensity in these far from equilibrium systems. Although there is no 
completely satisfactory theory for this scaling, there has been recent pro- 
gress based on (a) renormalization group and (b) interface dynamics 
studies. We will also discuss the possibility that dynamical universality 
classes exist in first-order phase transitions and try to identify some relevant 
parameters for these universality classes. In particular we will describe a 
number of different growth laws and related growth mechanisms. It should 
be stressed from the beginning that since the dynamical equations of 
motion for these first-order phase transitions are nonlinear, many of the 
theoretical problems in this field remain unsolved. 

Finally we mention two different experimental methods which are 
used in the study of metastable and unstable states. The first of these is 
direct microscopic observation. The use of optical or electron microscopes 
allows one in principle to obtain very detailed information on the interest- 
ing morphology of these systems. One could, for example, determine the 
time-dependent distribution function for clusters of different sizes (given a 
suitable definition of a cluster). The other method is to use small-angle 
scattering (SAS) of X rays, neutrons, or light. The scattering intensity is 
proportional to the structure factor S(k,  t) (when multiple scattering effects 
are taken into account), where k is the wave number of the scattered 
radiation at time t. Theoreticians have spent considerable effort in attempt- 
ing to develop a satisfactory theory for S(k,  t). A typical scattering experi- 
ment shows a peak in S(k,  t) at a wave number k,~(t). As time increases 
and the pattern coarsens, the peak height S(k,~(t), t) increases and kin(t) 
decreases. It is usually assumed that k m l(t) is proportional to some charac- 
teristic length scale, such as the average droplet size R(t) for the system. 

2. DYNAMICAL MODELS 

2.1. Semiphenomenological Continuum Models 

Much of the theory of nucleation, spinodal decomposition and domain 
growth is based on continuum models which have been extensively used in 
the study of critical dynamics. These models have been thoroughly dis- 
cussed by Hohenberg and Halperin (9) and others (3:~ and we therefore 
limit ourselves here to two simple examples (known as models A and B in 
critical dynamics). Model B is used as a simple model of a binary alloy 
consisting of two atomic species. (11-13) The equation of motion for the local 
concentration c(r, t) of one of the species is a continuity equation supple- 
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mented by a noise term ~" (whose physical origin is a set of phonon models 
which provide a "heat bath"): 

0 c / a t  = - v  i + (2.1) 

where the interdiffusion current j(r) is 

j(r) = - M V [ 6F/6c (r) ] (2.2) 

In Eq. (2.2), M is a mobility and F is a Ginzburg-Landau free energy 
functional 

g (c} =fdr[ �89 2 + f ( c ) l  (2.3) 

It is assumed that the Fourier components c k of c(r) have an upper cutoff 
A cc ~-1, where ~ is the equilibrium correlation length. Since we are 
interested in T < T C, f(c) has the form of a double well potential (i.e., the 
coefficient of c 2 in the usual "c 4'' field theory is negative). The noise term is 
assumed to have a Gaussian distribution, with a zero mean and a correla- 
tion 

(~(r, t)~'(r', t ' ))  = - 2kBrMV26( r  - r')8(t - t') (2.4) 

There is also a corresponding Fokker-Planck equation for the probability 
distributional functional for c(r) which we will not explicitly consider here. 

From the Fokker-Planck equation one can obtain an equation of 
motion for the structure factor S(k, t) which can be written as 

8S(k)  _2Mk2[  l f(o~)S~(k)] ~-i = (Kk2 +f(~ + . = 3  ~ (n - 1)! 

+ 2Mk B Tk 2 (2.5) 

Here f0 (n) = (Onf/Ocn)co , where c o is the initial quench concentration, Sn(k) 
is the Fourier transform of (un-l(r)u(r0)) [where u(r) is c ( r , t ) -  c01, and 
S2(k ) = S(k). This equation has been used to describe the early stages of 
spinodal decomposition for a quench in which f0 (2) < 0. If one neglects all 
but the term proportional to S(k) on the right-hand side of (2.5), one 
obtains Cahn's (11t linear theory of spinodal decomposition. This theory 
predicts that S(k, t )  (and hence the scattering intensity) should initially 
grow exponentially with time, for all k <~[2km, with a maximum at a 
time-independent k m given by km ~ = �89 J0r . This exponential growth 
for k <~[2k m is the instability against long-wavelength fluctuations men- 
tioned in Section 1. This behavior, however, is seldom (if ever) accurately 
observed in experiment or computer simulation studies. Binder (61 has 
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recently extended the Ginzburg criterion (15) to estimate the time of validity 
of the linear theory. This time is usually very small and possibly is strictly 
zero. 

Nonlinear terms in (2.5) are therefore very important, even in the early 
stages of spinodal decomposition. The best attempt to self-consistently 
develop a nonlinear theory is due to Langer et aL (14) The theory amounts 
to assuming that Sn(k ) ~ S(k), with a nontrivial, time-dependent propor- 
tionality factor which must be determined self-consistently. This theory 
gives a reasonably accurate description of the early stages of spinodal 
decomposition for critical quenches, but becomes inaccurate at later times 
and also for asymmetric quenches. As this theory has been adequately 
reviewed elsewhere we do not discuss it further here. (3) 

The second model which we will mention is model A, which describes 
the dynamics of a nonconserved order parameter ~b(r, t). This models an 
order-disorder transition in an alloy or a kinetic Ising antiferromagnet. The 
equation of motion is the same as that given above for model B, with 
c ( r , t )~ / ( r , t )  everywhere and with -MVZ- ->M in (2.4) [and a corre- 
sponding modification of (2.5)]: As we will see later on, the dynamics of 
this model (for a quenched system) is better understood theoretically than 
model B. This is not surprising, given that +(r, t) is not conserved, whereas 
c(r, t) is. 

We should note that occasionally one encounters skepticism concern- 
ing the validity of these simple continuum models in the metastable and 
unstable domains. Since there is not a first principles, mathematically 
rigorous dynamical theory of metastability and spinodal decomposition, 
one should view these continuum models with some caution. It is indeed 
possible that as our experimental and theoretical understanding of these 
problems progresses, we will have to improve the continuum models. [In 
general for example a kinetic coefficient, such as M in (2.2), depends on the 
order parameter. This dependence is usually ignore&] On the other hand, it 
should also be kept in mind that the continuum theories have successfully 
explained many qualitative and quantitative aspects of this field. This 
suggests that these semiphenomenological models have a reasonable degree 
of validity. 

2.2. Kinetic Lattice Models 

An alternative, microscopic approach is to use kinetic lattice models to 
study metastable and unstable states. A master equation was originally 
proposed by Glauber (16) as a model of the Ising ferromagnet with spin-flip 
dynamics. This was subsequently extended by Kawasaki, (~7) who intro- 
duced spin exchange to model diffusive dynamics. Since their pioneering 
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work, many kinetic models have been studied, including the Ising ferro- 
and antiferromagnets, the Q-state Potts model, and the vector Potts (or Zu) 
model. These models have given us considerable insight into the dynamics 
of first-order phase transitions, in spite of their relative simplicity. The 
kinetic Ising ferromagnet with spin-exchange dynamics is a model of a 
binary alloy (such as A1Zn). Here the spin variable Sj = + 1 at the j th 
lattice site corresponds to an A or B atom occupying the site, respectively. 
The nearest-neighbor exchange of spins in different states models the 
interdiffusion of the A and B atoms in the alloy. (Note that this is a very 
simplified model of alloy diffusion, in that it neglects important effects of 
vacancies.) Model B discussed above is the continuum analog of this Ising 
ferromagnet with Kawasaki dynamics. The nonequilibrium structure factor 
S(k,t),  cluster distribution function, and other properties of this Ising 
ferromagnet (with nearest-neighbor interactions), have been studied by 
Lebowitz, Kalos, and collaborators in Monte Carlo simulations for a 
variety of different quench points below Tc.(18'19) The results are in quite 
good agreement with recent experimental measurements on A1Zn, ~2~176 so 
this simplified model seems to describe quite a bit of the essential physics of 
the binary alloy phase separation process. 

3. DYNAMICAL SCALING FAR FROM EQUIL IBRIUM 

The original observation that S(k, t) satisfies a scaling form was made 
in Monte Carlo studies of the Ising model. (22~ This scaling form can be 
written as 

S(k , t )  = K-a( t )F(k/K(t) ) ,  t >1 t o (3.1) 

where d is the dimensonality, t o some "transient" time, F(x) is a scaling 
function and x(t) is some characteristic time-dependent wave number. [We 
omit in (3.1) a normalization factor sometimes used in discussing scaling.] 
Various choices exist for ~(t), such as the first moment kl(t), the position of 
the maximum in the scattering intensity, km(t), or the inverse Guinier 
radius R G- 1(01 [The quantity Ra(t ) is usually defined as the mean radius of 
gyration of clusters. More generally, (~9) it can be obtained from a plot of 
in S(k,  t) vs k 2, in which the slope of a straight portion of this plot yields 
Ro. ] If scaling holds, there is only one independent length scale, so any 
appropriate length, including those mentioned above, could be chosen. This 
scaling has subsequently been observed in a large number of different 
systems, (3~ including binary, ternary, and quaternary alloys, simple and 
binary fluids, glasses, tricritical systems (3He-4He mixtures and a d = 2 
metamagnet model), and the kinetic antiferromagnet, Potts, and vector 
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Potts models. (In the latter three cases the order parameter is not conserved 
in the dynamical models.) Thus scaling, i.e., self-similarity, seems to be a 
quite general property of "far from equilibrium," equilibrating systems. 

In an interesting recent paper Fratzl et al. (19) have reanalyzed some of 
the original Monte Carlo data for the Ising model of a binary alloy. They 
have also considered experimental results for the following systems: Au-Pt 
alloy, B203-PbO-A1203 glass, and ternary (quaternary) alloys AI-Zn-Mg-  
(Cu). (An earlier work by Lebowitz et al. (18) showed that the scaling 
function of the Ising model and AI-Zn were extremely similar.) In all of 
these cases they found that if they scaled with the Guinier radius, Rc~, the 
scaling function could be written as 

F c (x )  = dg(x)q,(x3 (Co, r ) )  (3.2) 

where for the systems studied q? and ,I, are universal functions. [The 
time-independent parameter 8(c0, t ) characterizes the point in the phase 
diagram where the experiment is performed and is different for "shallow" 
and "deep" quenches.] Furthermore, q5 and q~ have a simple interpretation 
(although Fratzl et al. have not determined their analytical forms theoreti- 
cally). Namely, ~b(x) is the intensity diffracted by a single cluster, while 
�9 t'(x) is a "cluster interference" function which differs from unity only at 
small values of k. In addition, ~(x) satisfies Porod's law (23) for large x, i.e., 
qa(x )~x- (d+ 1), x >> 1. This universality of F~(x)  in (3.2) for the systems 
studied certainly deserves further study. The form (3.2) is in fact very 
reminiscent of earlier phenomenological two phase models for S(k ,  @(23.3) 
Finally we note that Fratzl et al. propose a simple graphical method for 
determining the scaling behavior of the structure function. Among other 
advantages, their method seems to suggest a natural definition of the 
scaling length. 

A first principles theoretical derivation of (3.1) is not presently known, 
although various phenomenological droplet model theories have been pro- 
posed. (3) Two more fundamental approaches to this problem have, how- 
ever, recently been proposed. In the first method the nonlinear Langevin 
equations (e.g, models A and B) are reexpressed as equations of motion for 
the interfaces. (24-28) As we discuss later, this approach has led to a 
reasonably accurate scaling function for the kinetic antiferromagnet (model 
A). (29) A second approach has been applied to predict the scaling function 
and growth laws for the two-dimensional Ising model of a binary alloy. (3~ 
This is based on a real space renormalization group calculation in which an 
approximate recursion equation is written down relating the structure 
factors on an initial and new lattice, following a renormalization transfor- 
mation. This equation reduces to the recursion relation for the initial (t --~ 0) 
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and final (t ~ m) equilibrium structure factors. (The equilibrium recursion 
equations had previously been shown to give an accurate description of the 
equilibrium correlation functions.) (31) There is a parameter in this nonequi- 
librium recursion equation which is treated as an adjustable quantity. 
Although the results obtained from the recursion equations are not quanti- 
tatively in agreement with many of the Monte Carlo results, it is notable 
that scaling occurs as a natural solution. Thus this initial renormalization 
group calculation seems quite worth pursuing. It should be noted that a 
renormalization group approach to these kinetic phenomena is in fact 
suggested by (3.1), since this scaling is quite reminiscent of critical phenom- 
ena. Indeed, it is possible that a successful application of renormalization 
group methods would let us identify dynamical universality classes in the 
kinetics of first-order phase transitions. This possibility is also suggested by 
the recent work of Fratzl et al., vis-~i-vis (3.2). The fact that the continuum 
models used to describe first-order transitions (Section 2) are the same as 
those used to describe critical dynamics (except that in the former case a 
double well potential is involved) also suggests the possibility of universality 
classes in first-order transitions. However, at this moment we do not seem 
to be near a first principles renormalization group theory of these phenom- 
ena. 

Although a complete theoretical understanding of self-similarity is 
currently unavailable, it is possible to obtain an intuitive understanding of 
why such scaling should hold. Electron microscope studies (32) of the alloy 
Fe-AI have revealed in detail the evolution in time of (a) droplet growth 
following a quench into the metastable region and (b) highly intercon- 
nected structures coarsening following a quench into the unstable region. If 
one examines the photographs of this system it is clear that by a time- 
dependent, length rescaling the photographs of the process of (a) can be 
scaled to essentially the same picture. (33) A similar rescaling can be done 
for process (b), showing that in both cases the growth is self-similar. 
Therefore one would expect the scattering intensity to follow a simple form 
such as (3.1), in either the metastable or unstable region. It should also be 
noted that in this and other examples, it is clear that S ( k , t )  is relatively 
insensitive to the underlying morphology, except as concerns the growth 
laws for ~(t). 

4. D O M A I N  G R O W T H  

In the experiments on binary alloys, binary fluids, and other systems 
mentioned in Section 1, one often tries to parametrize the domain growth 
law by power law fits, as in critical phenomena. Thus one fits the data for 
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the average domain size to a form such as 

R ( t ) ~ A t  ~ + B, t o m t i t  t (4.1) 

where t o and t~ define the interval in which such a law is valid. Similar 
expressions are used to analyze the behavior of inverse characteristic wave 
numbers, such as k m 1(0 and k 1- l(t). When dynamical scaling holds [(3.1)], 
all such characteristic lengths should have the same exponent, n, in the 
corresponding time interval t o ~ t <~ t 1. It should be noted, however, that in 
most cases the kinetics of first-order phase transitions is not as well 
developed, either theoretically or experimentally, as critical phenomena 
now are. Thus one should view some of the published values of dynamical 
exponents [such as n in (4.1)] with considerable caution. In some cases it is 
quite possible that one has obtained an "effective" exponent, ne, from 
experiment or computer simulation studies, which might be interpreted as a 
situation in which two or more growth mechanisms are competing. In other 
words, it is possible that additional time dependence should be included in 
(4.1). For example, one might have 

R ( t ) ~ A t " { l + A f f n ' - " +  . . .  } + B ,  t o ~ t < ~ t  1 (4.2) 

If this is the case, it would be difficult to unequivocally determine the 
parameters in (4.2). It is also possible that (in the worst scenario) so many 
different mechanisms compete that a power law fit is not useful, or that 
only an effective exponent could be determined from the data analysis. 

On the other hand, there are cases in which one has sound theoretical 
predictions for the growth described by (4.1). For example, in either binary 
alloys or binary fluids at small supersaturation (i.e., quench concentration 
close to the coexistence curve) the Lifshitz-Slyozov (8) theory predicts that 
the "late time," t ~ 0% behavior of the droplet size of R ( t )  is given by (4.1), 
with n = 1/3. (Additional weak correction terms to this growth law are also 
predicted by Lifshitz and Slyozov. Recent work by Tokuyama and Ka- 
wasaki (34) has extended the Lifshitz-Slyozov theory beyond their small 
droplet volume limit. We will not discuss that work here.) As well, Allen 
and Cahn (28) have predicted that for model A (nonconserved order param- 
eter) the late time behavior satisfies (4.1) with n = 1/2. The  Lifshitz- 
Slyozov theory predicts that larger droplets grow at the expense of smaller 
droplets via a diffusive process. This involves the evaporation of atoms 
from smaller droplets and the condensation of atoms onto larger droplets, 
The Allen-Cahn theory predicts that domain growth in a simple system 
with a nonconserved order parameter is driven by the local curvature of the 
domains. The Lifshitz-Slyozov power law behavior has in fact been seen in 
binary alloys (although the amplitude A is not well established) and binary 
fluids. (3s) The Allen-Cahn growth law has been confirmed in computer 
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simulation studies of the d = 2 and d = 3 kinetic Ising antiferromag- 
net. O6-38) Thus there are certainly several cases (including others not 
discussed here) in which a power law analysis is quite appropriate. 

It therefore seems useful to summarize some of the relevant properties 
which are important in determining growth laws for different systems. 
These same quantities would also determine (at least partially) universality 
classes for the kinetics of first-order phase transitions, should this concept 
be put on sound theoretical grounds. (Recall that in critical phenomena, all 
members of a given class have "identical" critical properties, in the sense 
discussed by Hohenberg and Halperin. (9)) These quantities, which would 
differentiate the universality classes, must at least include the following: 

(1) The spatial dimensionality d. 
(2) The symmetry of the order parameter (as for example the number 

of its components, or whether or not a cubic anisotropy is contained in the 
Hamiltonian, etc.). 

(3) Conservation laws: For example, in the simple relaxational mod- 
els A and B, the local order parameter is nonconserved and conserved, 
respectively. [Note: A conserved local variable is a quantity whose spatial 
integral over the whole system remains constant. In such a case the time 
derivative of the variable can be expressed in terms of the divergence of a 
current, as in (2.1).] As a consequence, in the former case the late stage 
growth exponent is n = 1/2, whereas in the latter case it is n = 1/3, as 
mentioned above. 

(4) Hydrodynamic modes: Conservation laws and "Poisson bracket 
relations" play an important role in determining the hydrodynamic behav- 
ior of a system. When a system such as a binary fluid has a hydrodynamic 
behavior (in contrast to models A and B, say), other growth mechanisms 
can exist. For example, in a binary fluid the growth law resulting from the 
coalescence of droplets is altered (from that of droplet coalescence in 
binary alloys, say) by the need to "squeeze out" fluid between a pair of 
approaching droplets before they can coalesce. (39) A more dramatic effect 
is a hydrodynamic instability in which an interconnected structure of a 
"minority phase" of a binary fluid (such as develops in a quench near a 
critical concentration) breaks up into droplets, with a concomitant growth 
law characterized by an  exponent n = 1.(39) (This " tubular  necking down" 
is a surface tension driven flow which was apparently first predicted in a 
different context by Tomotika (4~ in 1935:) Experiments in binary fluids 
clearly reveal this growth law. 

There are other properties which can affect a growth mechanism or 
universality class, such as the existence of long-range forces or random 
magnetic fields, which we do not discuss here. There is also some evidence 
that lattice structure can play a role in determining (at the very least) the 
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effective growth law exponent or possibly n itself, as we discuss in the next 
section. A reasonably comprehensive review of various growth mechanisms 
and experimental results is given in Ref. 3. 

5. KINETIC ISING, POTTS, AND CLOCK MODELS 

In this section, we review recent work on the two-dimensional kinetic 
Ising, Potts, and clock (vector Potts or ZN) models. We consider only the 
case of nonconserved order parameter dynamics. The kinetic ferromagnetic 
Ising model of a binary alloy with Kawasaki dynamics has been extensively 
reviewed elsewhere (cf. Section 3). We also briefly mention some recent 
computer simulation and experimental studies of ordering in quenched 
physisorption and chemisorption systems. 

We begin by summarizing the results of Monte Carlo studies of the 
kinetic Ising antiferromagnet (which undergoes an order-disorder transi- 
tion) whose order parameter (the sublattice magnetization) is not con- 
served. Studies of this model (with Kawasaki dynamics and nearest- 
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Fig. 2. The scaling function F(x) of the dynamical scaling factor for the N = 6 state clock 
model. For N = 26 the scaling function is identical with that of N = 6. The scaling is 
performed using the second moment as the scaling parameter, i.e., ~(t) = [k2(t)] in Eq. (3.1). 
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neighbor interactions) in both two and three dimensions reveal that dynam- 
ical scaling (3.1) is satisfied. ~36-38~ The dynamical growth law is given by 
the Allen-Cahn theory, i.e., R(t )~ t  1/2, where R is the average domain size. 
The scaling function F(x) for the d = 2 antiferromagnet is essentially the 
same as that shown in Fig. 2. Studies have indicated at most a rather weak 
dependence of F(x) on the quench temperature. However, roughening 
fluctuations result in a rather strong temperature dependence of the growth 
rate. (41'38) Our theoretical understanding of this temperature dependence at 
the moment is incomplete, although some progress has been made on this 
problem.(42, 43) 

A very extensive Monte Carlo study of domain growth in the 
quenched Q-state Potts model has been carried out on both a triangular 
and a square lattice. (44-46) The Hamiltonian for this ferromagnetic Ports 
model with nearest-neighbor interactions is 

n n  

where 6ij is the Kronecker delta. The spin variable at site i, Si, can take on 
Q values, Si = 1,2 . . . .  , Q. The static critical properties of this model are 
well understood for Q = 2, 3, and 4, while for Q > 4 it is rigorously known 
that the system undergoes a first-order phase transition. {47~ The major 
results of the Monte Carlo study were the following. ~46~ The exponent n (Q)  
in (4.1) [or, to be conservative, the effective exponent ne(Q) ] decreases 
from n = 1/2 for Q = 2 (Ising model) to n--0.41 for large Q for the 
triangular lattice at all temperatures 0 ~< T~< 0.7 T c. The same result held 
for n (Q)  for the square lattice, for 0.5To ~< T~O.7T C. (For the two cases 
studied above 0.7T~, the thermal fluctuations were sufficiently large that 
reliable data was difficult to obtain.) The growth law at low temperatures 
for the square lattice showed a strong temperature dependence. At T ~ 0, it 
was found that n - -0 ,  as a consequence of the nucleation of pinned 
domains. This was in agreement with earlier theories {48'49) which predicted 
that domains would be pinned for Q > d + 1. (Note, however, that the 
pinning of domains does not imply that the system remains frozen since 
one must have a sufficiently large number of pinning configurations 
nucleated to pin the entire structure.) As T increases, the effective growth 
exponent n e for the square lattice increased, approaching the value found 
on the triangular lattice for the same Q. 

A detailed discussion of the role of vertices (where interfaces intersect) 
in reducing the Allen-Cahn domain growth mechanism (local curvature) 
on the square lattice is given in Ref. 46. This reference also illustrates how 
the role of vertices is reduced with increasing temperature on the square 
lattice, due to the roughening of domain walls by thermal fluctuations. The 
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distribution of domain sizes and shapes is calculated for several values of Q 
and shown to be time independent for large Q. Since there is some 
evidence (46) that the Potts Hamiltonian models grain growth in crystals for 
Q ~ m, this study might have considerable metallurgical consequences. So 
far, no calculations of the structure function for the Q state Potts model 
have been carried out, although studies are currently underway. (5~ Al- 
though a qualitative understanding of the dynamics of this model seems to 
exist, a quantitative dynamical theory would be most useful. 

Another model in which the development of order has been studied 
recently (sl) is the Z N (vector Potts or clock) model. In this model a 
two-dimensional spin vector is described by a complex phase e i(27rp)/N, with 
p = 1,2 . . . .  , N, at each site of a square lattice. This corresponds to a spin 
of unit length which can only point in one of N possible directions around 
the face of a clock. The Hamiltonian involves only nearest-neighbor 
interactions, with 

r e  = - J E cos(0/- 0j) (5.2) 
n i l  

(For N = 3 this is essentially the Q = 3 Potts model.) The static critical 
phenomena properties of this model are quite interesting, since for N ~> 5 it 
is thought that three different phases can exist. (52'53) At high temperatures 
there is as usual a disordered phase. At an intermediate temperature, T~, a 
phase transtion occurs in which "quasi-long-range order" develops, involv- 
ing a Kosterlitz-Thouless type transition. At an even lower transition, TI~, 
long-range, "ferromagnetic" order develops. As N---> ~ ,  Trl-->0 and the 
model becomes the planar X Y  model. 

In the Monte Carlo study the system was quenched from a high- 
temperature, disordered state to T < T~, in the "ferromagnetic" region. 
Thus, domains of the N possible ordered phases formed, separated by 
interfaces and vertices. Calculations of the structure factor S(k , t )  were 
carried out for N = 6 (at several different low temperatures) and for N = 26 
at one low temperature. (The structure factor was defined as the circular 
average of the Fourier transform of (e i (~  In both cases scaling was 
observed. In fact, within the precision of the Study, the scaling functions for 
the N = 6 and N = 26 models were identical (Fig. 2). Indeed, this scaling 
function is essentially the same as that of the Ising antiferromagnet. This is 
at first sight somewhat surprising, given the rather different morphologies 
involved in these three models. It is important to note, however, that the 
finite size of the lattices studied prevents one from determining F(x) for 
small values of x (see Fig. 2). As a consequence one does not yet know if 
F(x) is the same for these models in this region of x. On the other hand, 
S(k , t )  does not contain all of the information about the geometrical 
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Fig. 3. The characteristic "area ,  S(0, t ) /M as a function of time for the N = 6 state clock 
model for a 200 • 200 system following a quench to k 8 T / J  = 0.2. Note that we have omitted 
the temperature-dependent normalization ~b2q(T) in this plot. 

structure of the system, as has been confirmed in many  experimental and 
c o m p u t e r  simulation studies. The domain growth rates for N = 6 and 
N = 26 appear  somewhat different, however. For N = 6 one obtains an 
Al len-Cahn behavior; n = 1//2, for all the temperatures studied (in contrast 
to the Q -- 6 results for a square lattice). Two different methods were used 
to estimate domain growth. One of these involved the second moment  ka(t ) 
of S ( k , t ) ,  while the other was given by [S(0, t ) / /M]l /2 / tPeq(r) ,  where M is 
the number  of spins a n d  ~ e q ( T ) .  is the equilibrium value of the order 
parameter.  The latter was suggested by Sadiq and Binder, (54) based on the 
observation that S(0, t ) =  M ( ~ 2 ( t ) ) ,  where (~pz(t)) is the nonequilibrium 
average o f  @2(t) [and ~(t)  is the order parameter]. A typical result is shown 
in Fig. 3. For N = 26 the effective exponent was n e ~ 0.4. This was similar 
to the results for the Q = 26 Potts model. (Further work involving larger 
lattices for N = 26 is necessary, however, to obtain a more accurate 
estimate of the growth rate.) 

Other systems in which ordering has been studied by Monte Carlo 
methods include models of O/ /W(l l0) ,  (55) N 2 molecules on graphite, (56) 
and a square lattice gas with (fourfold degenerate) 2 • 1 order. (54) In 
addition, a recent experiment has studied the development of order in a 
quenched O/W(112)  chemisorption system. (Sv) 
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6. DYNAMICAL INTERFACE MODELS 

It remains unclear whether renormalization group methods can be 
successfully applied to the kinetics of first-order phase transitions. As 
Kawasaki and Ohta (26) have pointed out, the essential nonlinearity of the 
problem of spinodal decomposition arises because of the large fluctuations 
of the order parameter, compared to thermal fluctuations. They also noted 
that current renormalization group methods for dealing with the continuum 
models of Section 2 typically assume that the nonlinear interactions among 
the fluctuations are small (as in the e expansion). Such an approach 
therefore presumably cannot successfully handle the large fluctuations 
involved in spinodal decomposition. 

For this and other reasons, dynamical interracial models have been 
formulated as an alternative approach to dealing with the later stages of the 
kinetic processes. The simplest case to discuss is model A, which was first 
analyzed (neglecting the noise term) as an interface model by Allen and 
Cahn. (28) In this case the quenched system will quickly form local domains. 
The order parameter is close to one of its two possible equilibrium values, 
+-- ~eq, in each domain. They then showed that if one considered the case of 
a locally planar .("gently curved") interface, one could derive from the 
equation of motion for model A the equation of motion for the interface. 
This can be written as 

v = L'K" (6 .1 )  

where K is the mean curvature, e is the normal component of the velocity 
of the interface and L' = MK. This equation was subsequently rederived by 
others (24'27~ under the (more explicit) condition that the thickness of the 
interface is much less than the radius of curvature of the interface. These 
derivations included a noise term ~ in (6.1) which satisfies a fluctuation- 
dissipation relation 

(~(S , t )n(S ' , t ' ) )  - 2keTL' 6 u '(S - S')6(t - t') (6.2) 
o 

where o is the surface tension and S is the vector determining positions on 
the interface. 

Subsequently Ohta, Jasnow, and Kawasaki (29) introduced a curvilinear 
coordinate system u = (ul, u 2 , . . . ,  ua), where the interface is given by 
ul(r, t) = 0. They then rewrote (6.1) as a (nonlinear) equation of motion for 
ul(r, t), using the relation v(r,t) = -[Oul(r,t)/Ot]/IVull. Ohta et al. linear- 
ized the equation of motion for u~ and solved the resulting diffusion 
equation, assuming that the initial distribution of interfaces was random. 
They obtained (a) an explicit expression for the average area density of 
interfaces, A(t)ec R(t) - l ,  [where R-= (4Lt) l/2 and L = L ' ( d -  1)/d], and 
(b) an explicit form for the scaling function F(x) in (3.1). Their expression 
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for  F(x) is in reasonably good agreement with the scaling functions 
obtained in the Monte Carlo studies of the two- and three-dimensional 
Ising antiferromagnet (Section 5) and is closely related to an earlier theory 
for F(x). (57~ Their work seems to provide a promising theoretical approach 
to these nonlinear dynamical problems. Some recent work, extending their 
ideas, has been done. The roughening effects of thermal noise on the 
domain growth law has been considered, (43) and their method has recently 
been applied to study model A in the presence of a random magnet 
field. (58~ The effect of this random field on domain growth possibly 
provides a dynamical mechanism for the prediction (59~ that the lower 
critical dimension is d l = 2. However, this is a subtle problem, (6~ on which 
more theoretical work is necessary. 

Very recently Kawasaki and Ohta (26~ have developed a dynamical 
interface model for quenched fluid systems, in which hydrodynamic effects 
are important. Siggia (39~ had previously identified several coarsening mech- 
anisms following the early stages of spinodal decomposition (after inter- 
faces are formed) in critical fluid mixtures. The initial stage of coarsening 
for a near critical concentration quench is dominated by droplet coales- 
cence, with a growth law k m ~(t)~ At  1/3, where the amplitude depends on 
the concentration. This is followed by a more rapid growth, k m 1 ~ A't, in 
which the interconnected structure breaks up into droplets, as mentioned 
earlier. Finally, the growth process is dominated by gravity. If the concen- 
tration of the mixture is low, the droplet coalescence is followed by the 
Lifshitz-Slyozov process. Kawasaki and Ohta show that all of these pro- 
cesses can be described by their new dynamical interface model. It is 
possible that an appropriate solution of their equation for fluid interfaces 
(possibly along the lines of the Ohta-Jasnow-Kawasaki solution of model 
A) will lead to an explicit prediction for the scaling function of binary 
fluids. A similar method should then be applicable to binary alloys. Clearly, 
the next few years should be a period of intense theoretical and experimen- 
tal activity in this fascinating field of nonlinear phenomena in systems 
undergoing phase transitions. 
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